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Abstract

This paper presents NetKit, a modular toolkit for classtfaain networked data, and a case-study
of its application to a collection of networked data setsduseprior machine learning research.
Networked data are relational data where entities aredaterected, and this paper considers the
common case where entities whose labels are to be estimatditled to entities for which the
label is known. NetKit is based on a three-component franmkewenmprising a local classifier, a
relational classifier, and a collective inference proced¥farious existing relational learning algo-
rithms can be instantiated with appropriate choices fosettaree components and new relational
learning algorithms can be composed by new combinationsraponents. The case study demon-
strates how the toolkit facilitates comparison of diffarlrarning methods (which so far has been
lacking in machine learning research). It also shows howntbdular framework allows analysis
of subcomponents, to assess which, whether, and whenylarteomponents contribute to supe-
rior performance. The case study focuses on the simple tpariant special case of univariate
network classification, for which the only information deie is the structure of class linkage in
the network (i.e., only links and some class labels are abts). To our knowledge, no work pre-
viously has evaluated systematically the power of clagsalje alone for classification in machine
learning benchmark data sets. The results demonstratdycleat simple network-classification
models perform remarkably well—well enough that they stdod used regularly as baseline clas-
sifiers for studies of relational learning for networkedadat he results also show that there are a
small number of component combinations that excel, anddiffarent components are preferable
in different situations, for example when few versus martela are known.

Keywords: relational learning, network learning, collective infece, collective classification,
networked data

1. Introduction

This paper is about classification of entitiesnietworkeddata, one type of relational data. Rela-
tional classifier induction algorithms, and associatedrifice procedures, have been developed in
a variety of different research fields and problem settiigade and Wettschereck, 1996; Flach
and Lachiche, 1999; Dzeroski and Lavrac, 2001). Genertdigse algorithms consider not only
the features of the entities to be classified, but the relatio and the features of linked entities.

0. S.A. Macskassy and Provost, F.J., “Classification in éted Data: A toolkit and a univariate case study” CeDER
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MACSKASSY AND PROVOST

Observed improvements in generalization performance detrate that taking advantage of rela-
tional information in addition to attribute-value infortian can improve performance—sometimes
substantially (e.g. (Taskar et al., 2001; Jensen et al4)300

Networked dataare the special case of relational data where entities se&ecomnected, such
as web-pages or research papers (connected throughrfatidhis is in contrast with domains
such as molecules or arches, where each entity is a seltinedtgraph and connections between
the entities are absent or ignored. With a few exceptiong,(6Chakrabarti et al., 1998), (Taskar
etal., 2001)), recent machine learning research on cleatifin with networked data has focused on
across-networlnference: learning from one network and applying the ledmmodels to a separate,
presumably similar network (Craven et al., 1998; Lu and Get2003).

This paper focuses onithin-networkinference. In this case, networked data have the unigue
characteristic that training entities and entities whadels are to be estimated are interconnected.
Although the network may have disconnected component&rghiythere is not a clean separation
between the entities for which class membership is knowrtla@éntities for which estimations of
class membership are to be made. This introduces complisalensen and Neville, 2002b). For
example, the usual careful separation of data into traiaimdjtest sets is difficult. More important,
thinking in terms of separating training and test sets ofescan important facet of the data: entities
with known classifications can serve two roles. They act fisstraining data and subsequently as
background knowledge during inference (Provost et al.3200

Many real-world problems, especially those involving sbcietworks, exhibit opportunities
for within-network classification. For example, in fraudelgion entities to be classified as being
fraudulent or legitimate are intertwined with those for ahhiclassifications are known. In coun-
terterrorism and law enforcement, suspicious people mydat with known ‘bad’ people. Some
networked data are by-products of social networks, ratmam tirectly representing the networks
themselves. For example, networks of web pages are builebglp and organizations that are in-
terconnected; when classifying web pages, some clas®fisathenceforthlabelg may be known
and some may need to be estimated.

To our knowledge there has been no systematic study of maddénning methods for within-
network classification that compares various algorithmsarious data sets. A serious obstacle to
undertaking such a study is the scarcity of available tawdssmurce code, making it hard to compare
various methodologies and algorithms. Such an in-deptiystifurther hindered by the fact that
many relational learning algorithms can be separated atious sub-components. Ideally, a study
should account for the contributions of the sub-componed assess the relative advantage of
alternatives. To enable such a study, we need a framewadrkattiitates isolating the performance
of and interchanging sub-components.

As a main contribution of this paper, we introduce a netwarting toolkit (NetKit-SRL)
that enables in-depth, component-wise studies of tecksifar statistical relational learning and
inference with networked data. Starting with prior pubdidiwork, we have abstracted the described
algorithms and methodologies into a modular framework. kit is based on this framework.

NetKit is interesting for several reasons. First, it encasges several currently available sys-
tems, which are realized by choosing particular instaotigt for the different components. This
allows us to compare and contrast the different systems aal éqoting. Perhaps more impor-
tantly, the modularity of the toolkit broadens the desigacgpof possible systems beyond those

1. NetKit-SRL, or NetKit for short, is written in Java 1.5 aisdavailable as open source.
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that have appeared in prior published work, either by mixind matching the components of the
prior systems, or by introducing new alternatives for congus. Finally, NetKit's modularity not
only allows allows for direct comparison of various modddst also for comparison of isolated
components as we will show.

To illustrate, we use NetKit to conduct in an in-depth casmlgtof within-network classifi-
cation. The case study considers univariate learning aassification in homogeneous networks.
We compare various techniques on twelve benchmark datdreetsfour domains used in prior
machine learning research. Beyond illustrating the vafub@toolkit, the case study makes sev-
eral contributions. It provides systematic support foralem that with networked data even uni-
variate classification can be quite effective, and theeefoishould be considered as a baseline
against which to compare new relational learning algor#tf{Macskassy and Provost, 2003). The
case study illustrates a bias/variance tradeoff in netagriassification, based on the principle
of homophily (Blau, 1977; McPherson et al., 2001) (cf., asgivity (Newman, 2003) and auto-
correlation (Jensen and Neville, 2002b). Indeed, the sistphethod works so well it suggests
that we should consider finding more diverse benchmark data §he case study also suggests
network-classification analogues to feature selectionaatigie learning.

The remainder of the paper is organized as follows. Sectidasribes the problem of net-
work learning more formally, introduces the modular fraroegy reviews prior work, and describes
NetKit. Section 3 covers the case study, including the erpartal methodology, data used, toolkit
components used, and the results and analysis of the cotinpatudy. The paper ends with dis-
cussions of limitations and conclusions.

2. Network Learning

Traditionally, machine learning methods have treatedieatas independent, which makes it possi-
ble to infer class membership on an entity-by-entity baalgh networked data, the class member-
ship of one entity may have an influence on the class memipeo$lai related entity. Furthermore,
entities not directly linked may be related by chains ofdéimkhich suggests that it may be beneficial
to infer the class memberships of all entities simultango@ollective inferencing in relational data
(Taskar et al., 2002; Neville and Jensen, 2004) makes samedius statistical judgments regarding
the values of an attribute or attributes for multiple eattin a graphG for which some attribute
values are not known.

For the univariate case study presented below, the (siagl#)ute of vertex;, representing the
class, can take on some categorical valle X'.

Given graphG = (V, E), a single attributer; for each vertexo; € V, and given
known values for:; for some subset of verticdsX, univariate collective inferencing
is the process of simultaneously inferring the valuesofor the remaining vertices,
VU =V -V, ora probability distribution over those values.

As a shorthand, we will use” to denote the set (vector) of class values¥fdr, and similarly
for xU. Then,GX = (V, E,x¥) denotes everything that is known about the graph (we do not
consider the possibility of unknown edges). Edgge c E represents the edge between vertices
v; andv;, andw;; represents the edge weight. For this paper we consider onlyacted edges,
simply ignoring directionality if necessary for a partiaubpplication.
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Rather than estimating the full joint probability distrtmn P(xY|G*), relational learning of-
ten enhances tractability by making a Markov assumption:

P(xi|G) = P(xi|Ni), (1)

where); is the set of “neighbors” of vertex; such thatP(z;|\;) is independent off — \; (i.e.,
P(z;|N;) = P(z;|G)). For this paper, we make the (“first-order”) assumptiort tiacomprises
only the immediate neighbors ef in the graph. As one would expect, and as we will see, this
assumption can be violated to a greater or lesser degred bas®w edges are defined.

Given.V;, a relational model can be used to estimateNote that\ (= A; N VY)—the set
of neighbors ofy; whose values of attributeare not known—could be non-empty. Therefore, even
if the Markov assumption holds, a simple application of thkational model may be insufficient.
However, the relational model may be used to estimate theldaif VX = N; — NY. Further,
just as estimates for the Iabelsxﬁff influence the estimate far;, z; also influences the estimate
of the labels of\V. In order to simultaneously estimat#’, various collective methods have been
introduced for relational inference, including Gibbs séingp (Geman and Geman, 1984), loopy
belief propagation (Pearl, 1988), relaxation labelingdkiabarti et al., 1998), and other iterative
classification methods (Neville and Jensen, 2000; Lu andd@e2003). All such methods require
initial (“prior”) estimates of the values foP(x"|G¥). The priors could be Bayesian subjective
priors (Savage, 1954), or they could be estimated from dateommon estimation method is to
employ a non-relational learner, using available “locatfibutes ofv; to estimater; (e.g., as done
by Chakrabarti et al. (1998)). In the univariate case, sachllattributes are not available; for our
case study, we use the marginal class distribution bVeras the prior for alk;; € xU.

2.1 Network Learning Framework

As suggested by the discussion above, one prominent clagsstgms for learning and inference
in networked data can be characterized by three main compmneor each component, there are
many possible instantiations.

1. Non-relational (“local”) model. This component consists of a (learned) model, which uses
only local information—namely information about (attriba of) the entities whose target
variable is to be estimated. The local models can be usednerge priors that comprise
the initial state for the relational learning and colleetimference components. They also can
be used as one source of evidence during collective inferembese models typically are
produced by traditional machine learning methods.

2. Relational model. In contrast to the non-relational component, the relatiomadel makes
use of the relations in the network as well as the values abates of related entities, pos-
sibly through long chains of relations. Relational modé$e anay use local attributes of the
entities.

3. Collective inferencing. The collective inferencing component determines how thenawn
values are estimated together, possibly influencing edwdr,ais described above.

Certain techniques from prior work, described below, cambmntiated with particular choices
of these components. For example, using a naive Bayesf@ass the local model, a naive Bayes
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Markov Random Field classifier for the relational model, egldxation labeling for the inferencing
method forms the system used by Chakrabarti et al. (1998)jngUsgistic regression for the

local and relational models, and iterative classificationthe inferencing method produces Lu &
Getoor’s (2003) link-based classifier. Using class priorstlie local model, a (weighted) majority
vote of neighboring classes for the relational model, atakegion labeling for the inference method
forms Macskassy & Provost’s (2003) relational neighbossiger.

2.2 Prior Work

For machine learning research on networked data, the vaigzaper of Chakrabarti et al. (1998)
studied classifying web-pages based on the text and (gp$sibrred) class labels of neighboring
pages, using relaxation labeling paired with naive Bayesalland relational classifiers. In their
experiments, using the link structure substantially inmprbclassification over using the local (text)
information alone. Further, considering the text of theghbirs generally hurt performance (based
on the methods they used), whereas using only the (infectad$ labels improved performance.

More recently, Lu and Getoor (2003) investigated netwodssification applied to linked doc-
uments (web pages and published manuscripts with an acegtngecitation graph). Similarly to
the work of Chakrabarti et al. (1998), Lu and Getoor (2003 e text of the document as well
as a relational classifier. Their “link-based” classifiersvealogistic regression model based on a
vector of aggregations of properties of neighboring noddset with different types of links (in-,
out-, co-links). Various aggregates were considered, asdhe mode (the value of the most often
occurring neighbor class), a binary vector with a value of @edl i if there was a neighbor whose
class label was;, and a count vector where céltontained the number of neighbors belonging to
classe;. In their experiments, the count model performed best.

Univariate within-network classification has been considepreviously (Bernstein et al., 2002,
2003; Macskassy and Provost, 2003). Using business newsstm et al. (2003) linked companies
if they co-occurred in a news story. They demonstrated tfec@feness of various vector-space
techniques for network classification of companies intastdy sectors, based on vectors of class
labels of the neighbors. This work did not use collectiveeiehcing, performing only a one-shot
prediction based on the known neighborhood (knowdfigy of the class labels and predicting the
remaining10%). Other domains such as web-pages, movies and citatiorhgtagve also been
considered for univariate within-network classificatiddacskassy and Provost (2003) investigated
how well the univariate classification performed as vanangounts of data initially were labeled.
They used a relaxation labeling method similar to that use@akrabarti et al. (1998). In both
studies, a very simple model predicting class memberstdpdan the most prevalent class in the
neighborhood was shown to perform remarkably well. Thegrepaper can be seen in part as a
systematic followup to these workshop papers.

Markov Random Fields (MRFs) have been used extensivelyrfivatate network classification
for vision and image restoration. Nodes in the network axelpiin an image and the labels are
image-related such as whether a pixel is part of a verticélooizontal border (Dobrushin, 1968;
Geman and Geman, 1984; Winkler, 2003). MRFs are used to @stithe joint probability of a
set of nodes based on their immediate neighborhoods uneléirgsiorder Markov assumption that
P(z;|X/z;) = P(x|N;), whereX/z; means all nodes iX exceptz; and.\; is a neighborhood
function returning the neighbors of. Chakrabarti et al. (1998) use an MRF formulation for their
network classifier (described above), which we reconstruisietKit.
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One popular method to compute the MRF joint probability ibléaisampling (described below).
The most common use of Gibbs sampling in vision is not to camthe final posteriors as we doin
this paper, but rather to get final classifications. One wagnforce that the Gibbs sampler settles
to a final state is by using a simulated annealing approacheanhe temperature is dropped slowly
until nodes no longer change state (Geman and Geman, 19&4¥)lleNand Jensen (2000) used a
simulated annealing approach in thisérative classificatiorcollective inference procedure, where
a label for a given node was kept only if the relational cfesisivas confident about the label at a
given threshold, otherwise the label would be setwth . By slowly lowering this threshold, the
system was eventually able to label all nodes. NetKit inomafes iterative classification based on
the subsequent work of Lu and Getoor (2003) (described above

Graph-cut techniques recently have been used in visioargsas an alternative to using Gibbs
sampling (Boykov et al., 2001), iteratively changing thiedlings of many nodes at once by solving
a min-cut/max-flow problem based on the current labelingsaddition to the explicit links in the
data, each node is also connected to one special node petaites. A min-cut algorithm is then
used to partition the graph such that only one class-nodainsniinked to each node in the data.
Based on this cut, the method then changes the labelingsepedts until no pixels change labels.
These methods are very fast. NetKit does not yet incorpgateh-cut techniques.

Several recent methods apply to learning in networked dhetggnd the homogeneous, univari-
ate case treated in this paper. Conditional Random Fiel&-§L (Lafferty et al., 2001) are an
extension of MRFs where labels are conditioned not only enlébels of neighbors, but also on
the attributes of the node itself and the attributes of thghimrhood nodes. CRFs were applied
to part-of-speech (POS) tagging in text, where the noddsamytaphs represented the words in the
sentence, connected by their word order. The labels to lbgbed were POS-tags and the attribute
of a node was the word it represents. The neighborhood of d samprised the words on either
side of it.

Relational Bayesian Networks (RBNgKoller and Pfeffer, 1998; Friedman et al., 1999; Taskar
et al., 2001) extend Bayesian networks (BNs (Pearl, 1988Ypking advantage of the fact that
a variable used in one instantiation of a BN may refer to thecesame variable in another BN.
For example, if the grade of a student depends upon his parfethis professor is the same for
all students in the class. Therefore, rather than buildimg BN and using it in isolation for each
entity, RBNs directly link shared variables in “unrolledNB, thereby generating one big network
of connected entities for which collective inferencing termperformed. Most relevant to this paper,
for within-network classification RBNs were applied by Taslkt al. (2001) to various domains,
including a data set of published manuscripts linked by @stland citations. Loopy Belief Prop-
agation (Pearl, 1988) was used to perform the collectiverarfcing. The study showed that the
PRM performed better than a non-relational naive Bayesifiasand that using both author and
citation information in conjunction with the text of the papvorked better than using only author
or citation information in conjunction with the text.

Relational Dependency Networks (RDNs) (Neville and Jen2ed3, 2004), extend dependency
networks (Heckerman et al., 2000) in much the same way thalsRBtend Bayes Networks. RDNs
have been used successfully on a bibliometrics data setvéerdata set and a linked web-page
data set, where they were shown to perform much better thataional probability tree (RPT)

2. These originally were called Probabilistic Relationaddéls (PRMs). PRM now typically is used as a more gen-
eral term which includes other models such as RelationabBeégncy Networks and Relational Markov Networks,
described next.
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Input: G, VU RCype, LCtype, Cliype

Induce a local classification model, LC, of type {,$, usingG™
Induce a relational classification model, RC, of typeyBC usingGX
Estimater € VU using LC.

Apply collective inferencing of type Ghe, using RC as the model.
Output: Final estimates fox; € VV

Table 1: High-level pseudo code for the main core of the Netviearning Toolkit.

(Neville et al., 2003) using no collective inferencing. @é&sampling was used to perform collective
inferencing.

Relational Markov Networks (RMNs) (Taskar et al., 2002)eext Markov Networks (Pearl,
1988). The clique potential functions used are based ortibmad templates, each of which is a
(learned, class-conditional) probability function baseda user-specified set of relations. Taskar
et al. (2002) applied RMNs to a set of web-pages and showedhnaperformed better than other
non-relational learners as well as naive Bayes and logisticession when used with the same
relations as the RMN. Loopy Belief Propagation was used tibpa collective inferencing.

The above systems use only a few of the many relational legitechniques proposed in the lit-
erature. There are many more, for example from the richalitee of inductive logic programming
(ILP) (e.g. Flach and Lachiche (1999); Raedt et al. (2001); Dzeroskilaawtac (2001); Kramer
et al. (2001); Domingos and Richardson (2004)), or basedguelational database joins to gen-
erate relational features (e.g. Perlich and Provost (20@3&)escul and Ungar (2003); Perlich and
Provost (2004)). These techniques could be the basis fatiaul relational model components in
NetKit.

2.3 Network Learning Toolkit (NetKit-SRL)

NetKit is designed to accommodate the interchange of commtsrand the introduction of new
components. Any local model can be paired with any relatiommalel, which can then be combined
with any collective inference method. NetKit's core rogtis simple and is outlined in Table 1.

NetKit consists of these primary modules:
1. Input: This module reads data into a memory-resident g@ph

2. Local classifier inducer (LC): Given as training dati *, this module returns a model which
using only attributes of a nodg € VY will estimatex;. Ideally, LC will estimate a proba-
bility distribution over the possible values foy.

3. Relational classifier inducer (RC): Given G, this module returns a model which using
and\; will estimatez;. Ideally, RC will estimate a probability distribution oviére possible
values forz;.

4. Collective Inferencing: Given a graphG possibly with somer; known, a set of priors over
xY, and a relational modeW , this applies collective inferencing to estimate.
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5. Weka Wrapper: This module is a wrapper for WekgWitten and Frank, 2000) and will
convert the graph representationuginto an entity that can either be learned from or be used
to estimater;.

Implementation details on these modules can be found in AgigeB. The current version
of NetKit-SRL, while able to read in heterogeneous graphsy supports classification in graphs
consisting of a single type of node.

2.4 NetKit Components

This section describes the particular relational clagsifad collective inference methods imple-
mented in NetKit for the univariate case study. First, wecdbs the four (univariat§ relational
classifiers (RC components). Then, we describe the thréectioe inference methods.

2.4.1 RELATIONAL CLASSIFIERS(RC)

All four relational classifiers take advantage of a firstasrtarkov assumption on the network:
only a node’s local neighborhood is necessary for classifica The univariate case renders this
assumption particularly restrictive: only the class lslafl the local neighbors are necessary. The
local network is defined by the user, analogous to the usefirition of the feature set for proposi-
tional learning. Entities whose class labels are not knasgredher ignored or are assigned a prior,
depending upon the choice of local classifier.

2.4.1.1 WEIGHTED-VOTE RELATIONAL NEIGHBOR CLASSIFIER (WVRN)

Our firstand simplest classifier (cf., Macskassy and Prq@8§3f) estimates class-membership
probabilities based on one assumption in addition to thekbMaassumption: the entities exhibit
homophily—i.e., linked entities have a propensity to bgltmthe same class (Blau, 1977; McPher-
son et al., 2001). This homophily-based model is motivatedliservations and theories of social
networks (Blau, 1977; McPherson et al., 2001), where horfpghubiquitous. Homophily was
one of the first characteristics noted by early social nétwesearchers (Almack, 1922; Bott, 1928;
Richardson, 1940; Loomis, 1946; Lazarsfeld and Merton4),9and holds for a wide variety of
different relationships (McPherson et al., 2001). It seesasonable to conjecture that homophily
may also be present in other sorts of networks, especiatlyarks of artifacts created by people.
(Recentlyassortativity a link-centric notion of homophily, has become the focusnathematical
studies of network structure (Newman, 2003).)

Definition. Givenv; € VU, the weighted-vote relational-neighbor classifier (wvRislimates
P(z;|\V;) as the (weighted) mean of the class-membership probabilifi the entities it\;:

1
Plz; = XNy = - > wiy- Pl = X|NG), ()
v,EM-

where Z is the usual normalizer. As the above is a recursive defimiffor undirected graphs,
vj € N; & v; € Nj) the classifier uses the “current” estimate @fxz; = X|N), where the
“current” estimate is defined by the collective inferenaeshtgque being used.

3. We use version 3.4.2. Weka is availablé&gp://www.cs.waikato.ac.nz/"ml/weka/
4. The open-source NetKit release contains multivariatsiees of these classifiers.
5. Previously called the probabilistic Relational Neighblassifier (pRN).
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2.4.1.2 GQASS-DISTRIBUTION RELATIONAL NEIGHBOR CLASSIFIER (CDRN)

Learning a model of the distribution of neighbor class labmhy lead to better discrimination
than simply using the (weighted) mode. Following Perlicld &rovost (2003), and in the spirit
of Rocchio’s method (Rocchio, 1971), we define negde class vectoCV (v;) to be the vector of
summed linkage weights to the various (known) classes, Esd &'s reference vectoRV (X)) to
be the average of the class vectors for nodes known to besxf XlaSpecifically:

CV(’UZ)k = Z wi,j, (3)

vj ENi71‘j=Xk

whereCV (v;); represents thé'" position in the class vector an¥l;, is the k*" class. Based on
these class vectors, the reference vectors can then bedlafinke vector sum:

RV(X)zﬁ S V() )
viEV)I((

whereVE = {v;jv; € VE 2, = X}.
During training, neighbors i’V are ignored. For prediction, estimated class membership
probabilities are used for neighborslif’, and equation (3) becomes:

CV(i)r = Y Plxj = XplNj) - wi (5)
WEN}

Definition. Givenwv; € VY, the class-distribution relational-neighbor classifielRN) es-
timates the probability of class membershipiz; = X|N;), by the normalized vector distance
betweeny;’s class vector and class’s reference vector:

Plzi = XIN) = dist (CV(u:), RV(X)), 6)

whereZ is the usual normalizer antlst(a, b) is any vector distance functio.(, Ls, cosine, etc.).
For the results presented below, we use cosine distance.

As with wwRN, Equation 5 is a recursive definition, and therefthe value ofP(z; = X |N;)
is approximated by the “current” estimate as given by thectetl collective inference technique.

2.4.1.3 NETWORK-ONLY BAYES CLASSIFIER (NBC)

NetKit's network-only Bayes classifier (nBC) is based onalgorithm described by Chakrabarti
et al. (1998). To start, assume there is a single ngde VY. The nBC uses multinomial naive
Bayesian classification based on the classes'®heighbors.

PONIX) - P(X)
PN )

where

1 .
PNIIX) = ] Plaj = Xjela; = X)" ®)
ijM
whereZ is a normalizing constant ankl;- is the class observed at node BecauseP(\;) is the
same for each class, normalization across the classessaligwo ignore it (as with naive Bayes

generally).
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We call nBC “network-only” to emphasize that in the applicatto the univariate case study be-
low, we do not use local attributes of a node. As discussedalithakrabarti et al. initialize nodes’
priors based on a naive Bayes model over the local documetft ta the univariate setting, local
text is not available. We therefore use the same scheme #éisefamther RCs: initialize unknown
labels as decided by the local classifier being used (eitigectass prior orriull ’, depending on
the Cl component, as described below). If a neighbor’s labelull ’, then it is ignored for clas-
sification. Also, Chakrabarti et al. differentiated betwéscoming and outgoing links, whereas we
do not. Finally, Chakrabarti et al. do not mention how or Vhieetthey account for possible zeros
in the estimations of the marginal conditional probalahtiwe apply traditional Laplace smoothing
wherem = |X|, the number of classes.

The foregoing assumes all neighbor labels are known. Wheralues of some neighbors are
unknown, but estimations are available, we follow Chakriled al. (1998) and perform Markov
Random Fields (MRF) estimations (Dobrushin, 1968; GemahGeman, 1984; Winkler, 2003),
based on how different configurations of neighbors’ claaffest a target entity’s class. Specifically,
the classifier computes a Bayesian combination based amétetl) configuration priors and the
entity’s known neighbors. Chakrabarti et al. (1998) ddmrthis procedure in detail. For our case
study, such an estimation is necessary only when usingadaxliabeling (described below).

2.4.1.4 NETWORK-ONLY LINK-BASED CLASSIFICATION (NLB)

The final relational classifier used in the case study is aortwnly derivative of the link-based
classifier (Lu and Getoor, 2003). The network-only Link-Ba<lassifier (nLB) creates a feature
vector for a node by aggregating the labels of neighborirdeapand then uses logistic regression
to build a discriminative model based on these feature vecibhis learned model is then applied
to estimateP(z; = X|N;). As with the nBC, the difference between the “network-origk-based
classifier and Lu and Getoor’s version is that for the unatarcase study we do not consider local
attributes (e.g., text).

As described above, Lu and Getoor (2003) considered vaaggeegation methods: existence
(binary), the mode, and value counts. The last aggregatethad, the count model, is equivalent
to the class vectar'V (v;) defined in Equation 5. This was the best performing metholderstudy
by Lu and Getoor, and is the method on which we base nLB. Thstlogegression classifier used
by nLB is the multiclass implementation from Weka versiofh.3.

We made one minor modification to the ariginal link-basedsifer. Perlich (2003) argues that
in different situations it may be preferable to use vect@sedol on raw counts (as given above) or
vectors based on normalized counts. We did preliminary usisg both. The normalized vectors
generally performed better, and so we use them for the cadg. st

2.4.2 OLLECTIVE INFERENCEMETHODS(CI)

This section describes three collective inferencing (Céthnds implemented in NetKit and used
in the case study. As described above, given (i) a netwotlalizied by the local model, and (ii)

a relational model, a Cl method infers a set of class labelgg ideally with the maximum joint
probability. Alternatively, if estimates of entities’ ds-membership probabilities are needed, the

6. The original classifier was defined d3(z; = X|N;) = P(N;|X) - P(m:|v;) - P(X), with 7; being the text of the
document-entity represented by verigx

10
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1. Initialize priors using the local classifier modgt ;. Forv; € VY, ¢; « My (v;),
wherec; represents the estimate fx;). For the case study, the local classifier
model returns the marginal class distribution estimatechfx’ .

2. Generate a random orderin@, of vertices inV’?.

3. Setinitial labels irfD by sampling based on the priors. This will generate a pdati¢u
configuration of labels iid-.

4. For elements; € O in order:

() Apply the relational classifier moded; — Mg.
(b) Sample a value, fromc;.

(c) Setz; «— zs.
Note that when\ i is applied taz; it uses the “new” labelings from elements
1,...,(i—1), while using the “current” labelings for elemertis-1), ..., n.

5. Repeat prior step00 times without keeping any statistics. This is known as|the
burnin period.

6. Repeat again f@000 iterations, counting the number of times eaglis assigned a
particular valueX € X'. Normalizing these counts forms the final class probabhility
estimates.

Table 2: Pseudo-code for Gibbs sampling.

Cl method estimates the marginal probability distributif:;|G¥, A) for eachr; € xV, whereA
stands for the priors returned by the local classifier.

2.4.2.1 GBBS SAMPLING (GS)

Gibbs sampling (GS) (Geman and Geman, 1984) is commonlyfosedllective inferencing with
relational learning systems. The algorithm is straighténd and is shown in Table 2The use of
200 and2000 for the burnin period and number of iterations are commoskgduvalues. Ideally,
we would iterate until the estimations converge. Althouggré are convergence tests for the Gibbs
sampler, they are not robust nor well understood (cf. Gitke.g1995)), so we simply use a fixed
number of iterations.

Notably, because all nodes are assigned a class at evaetyaterwhen GS is used the relational
models will always see a fully labeled/classified neighboxh making prediction straightforward.
For example, nBC does not need its MRF estimation.

2.4.2.2 RELAXATION LABELING (RL)

The second collective inferencing method implemented aetl un this study is relaxation
labeling (RL), based on the method of Chakrabarti et al. 9®Rather than treat as being in
a specific labeling “state” at every point (as Gibbs samptings), relaxation labeling retains the
uncertainty, keeping track of the current probability mstiions forx". The relational model must

7. This instance of Gibbs sampling uses a single randomiagi€ichain”), as this is what we used in the case study.
In the case study, usin) chains (the default in NetKit) had no effect on the final aacigs.

8. As it turns out, in our case study GS invariably reachedeangegly final plateau in fewer thalD00 iterations, and
often in fewer thars00.

11
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1. Forv; € VY, initialize the prior:cgo) — My (v;). For the case study, the logal
classifier model returns the class priors.

2. Forelements; € VU:
(a) Estimater; by applying the relational model:
o = Mp(), (©)
Where/\/lR(vZ(t)) denotes using the estimai€’), andt is the iteration coun

This has the effect that all predictions are done pseudodtameously base
on the state of the graph after iteration

o -

3. Repeat fofl iterations, wherd” = 99 for the case studyc(™) will comprise the
final class probability estimations.

Table 3: Pseudo-code for Relaxation Labeling.

be able to use these estimations. Further, rather thanastgnone node at a time and updating
the graph right away, relaxation labeling “freezes” therent estimations so that at steg- 1, all
vertices will be updated based on the estimations fromist&pe algorithm is shown in Table 3.
Preliminary runs showed that RL sometimes does not conyergeather ends up oscillating
between two point&. NetKit performs simulated annealing—on each subsequerstion giving
more weight to a node’s own current estimate and less to theirce of its neighbors.
The new updating step, replacing Equation 9, is defined as:

Cz(tﬂ) _ 5(t+1) 'MR(’UZ@) + (1_5(t+1)) _CZ(t)’ (10)
where
8 = k
5(t+1) - 5(t) - a, (11)

wherek is a constant, which for the case study we set.th and« is a decay constant, which
we set t00.99. Preliminary testing showed that final performance is velyust as long a8.9 <

a < 1. Smaller values ofx can lead to neighbors losing their weight too quickly, whoetm hurt
performance when only very few labels are known. A post-erarof the results showed that the
accuracies often converged within the fi28titerations.

2.4.2.3 TERATIVE CLASSIFICATION (IC)

The third and final collective inferencing method implenezhin NetKit and used in the case
study is the variant of Iterative Classification describethie work on link-based classification (Lu
and Getoor, 2003) and shown in Table 4. As with Gibbs sampthmgrelational model never sees
uncertainty in the labels of (neighbor) entities. Either thbel of a neighbor isull and ignored
(which only happens in the first iteration), or it is assigaedkfinite label.

9. Such oscillation has been noted elsewhere for closedye@imethods (Murphy et al., 1999).

12
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1. Forv; € VY, initialize the prior:c; «— M (v;). The link-based classification work
of Lu and Getoor (2003) uses a local classifier to set initegsifications. This wil
clearly not work in our case (all unknowns would be classifisthe majority class
and we therefore use a local classifier model which retartls (i.e., it does nof
return an estimation.)

2. Generate a random orderir@, of elements i’V

3. For elements; € O:

(@) Apply the relational classifier model; — Mg, using all non-null labels.
Entities which have not yet been classified will be ignoréds(tvill only occur
in the first iteration).

(b) Classifyv;:
T; = argmax,c;.

4. Repeat fofl" = 1000 iterations, or until no entities receive a new class |I&b€he
estimates from the final iteration will be used as the fina<arobability estimate

U7y

a. A post-mortem of the results showed that IC often stoppéklimi0 — 20 iterations when paired
with cdRN, nBC or nLB. For wvRN, it generally ran the fuld00 iterations, although the accu
racy quickly plateaued and wvRN ended up moving within a sraalge of similar accuracies

Table 4: Pseudo-code for Iterative Classification.

3. Case Study

The study presented in this section has two goals. Firshatvsases NetKit, demonstrating that
the modular framework indeed facilitates the comparisogystems for learning and inference in
networked data. Second, it examines the simple-but-impodpecial case of univariate learning
and inference in homogeneous networks, comparing alteetathniques that have not before been
compared systematically, if at all. The setting for the cataely is simple: For some entities in the
network, the value af; is known; for others it must be estimated.

Univariate classification, albeit a simplification for maghymains, is important for several rea-
sons. First, itis a representation that is used in somecggins. In the introduction we mentioned
fraud detection. As a specific example, a telephone accbantalls the same numbers as a known
fraudulent account (and hence the accounts are connectgjththese intermediary numbers) is
suspicious (Fawcett and Provost, 1997; Cortes et al., 200Rd) phone fraud, univariate network
classification often provides alarms with reasonable @merand remarkably low false-positive
rates. In fact, the fraud detection work of Cortes et al. @suon exactly this representation (albeit
also considering changes in the network over time). Gelyespéaking, a homogeneous, univariate
network is an inexpensive (in terms of data gathering, @siog, storage) approximation of many
complex networked data problems. Fraud detection apmstertainly do have a variety of addi-
tional attributes of importance; nevertheless, univargnplifications are very useful and are used
in practice.

The univariate case also is important scientifically. Ilases a primary difference between
networked data and non-networked data, facilitating tredyasis and comparison of relevant clas-
sification and learning methods. One thesis of this studias there is considerable information

13
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Category Size
High-revenue 572
Low-revenue 597
Total 1169
Base accuracy| 51.07%

Table 5: Details on class distribution for the IMDb data set.

inherent in the structure of the networked data and thairtfasmation can be readily taken advan-
tage of, using simple models, to estimate the labels of wvknentities. This thesis is tested by
isolating this characteristic—namely ignoring any awxiji attributes and only allowing the use of
known class labels—and empirically evaluating how wellvaniate models perform in this setting
on benchmark data sets.

Considering homogeneous networks plays a similar rolehoAlgh the domains we consider
have obvious representations consisting of multiple gityppes and edges (e.g., people and papers
for node types and same-author-as and cited-by as edgeityaestation-graph domain), a homo-
geneous representation is much simpler. In order to asdesther a more complex representation
is worthwhile, it is necessary to assess standard techaiguéhe simpler representation (as we do
in this case study). Of course, the way a network is “homaggtiimay have a considerable effect
on classification performance. We will revisit this belowdaction 3.3.6.

3.1 Data

The case study reported in this paper makes use of 12 benkldatar sets from four domains that
have been the subject of prior study in machine learning.hfsstudy focuses on networked data,
any singleton (disconnected) entities in the data were vethoTherefore, the statistics we present
may differ from those reported previously.

3.1.1 IMDs

Networked data from the Internet Movie Database (IMBtjave been used to build models pre-
dicting movie success based on box-office receipts (JensgriNaville, 2002a). Following the
work of Neville et al. (2003), we focus on movies releasechm Wnited States between 1996 and
2001 with the goal of estimating whether the opening weekendoffice receipts “will” exceed $2
million (Neville et al., 2003). Obtaining data from the IMDeb-site, we identified 169 movies
released between 1996 and 2001 that we were able to link dpanitgh-revenue classification in
the database given to us by the authors of the original sfthiy.class distribution of the data set is
shown in Table 5.

We link movies if they share a production company, based semfations from previous wotk
(Macskassy and Provost, 2003). The weight of an edge in thdtieg graph is the number of
production companies two movies have in common. Notablyigwere the temporal aspect of the
movies in this study, simply labeling movies at random far titaining set. This can lead to a movie
in the test set being released earlier than a movie in theitigaset.

10. http://www.imdb.com
11. And on a suggestion from David Jensen.
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Category Size
Case Based 402
Genetic Algorithms 551
Neural Networks 1064

Probabilistic Methods 529
Reinforcement Learning 335

Rule Learning 230
Theory 472
Total 3583
Base accuracy 29.70%

Table 6: Details on class distribution for the CoRA data set.

3.1.2 @RA

The CoRA data set (McCallum et al., 2000) comprises compgience research papers. Itincludes
the full citation graph as well as labels for the topic of epaber (and potentially sub- and sub-sub-
topics)?? Following a prior study (Taskar et al., 2001), we focused apgys within the machine
learning topic with the classification task of predictingagopr’s sub-topic (of which there are seven).
The class distribution of the data set is shown in Table 6.

Papers can be linked in one of two ways: they share a commadiorawr one cites the other.
Following prior work (Lu and Getoor, 2003), we link two papérone cites the other. This number
ordinarily would only be zero or one unless the two paperse&dich other.

3.1.3 WEBKB

The third domain we draw from is based on the WebKB Projeciyén et al., 199832 It consists of
sets of web pages from four computer science departmerttseath page manually labeled into
categories: course, department, faculty, project, saifjent or other. As with other work (Neville
et al., 2003; Lu and Getoor, 2003), we ignore pages in theetdtbategory except as described
below.

From the WebKB data we produce eight networked data setsitbinanetwork classification.
For each of the four universities, we consider two differelaissification problems: thé class
problem, and following a prior study, the binary classifioattask of predicting whether a page
belongs to a student (Neville et al., 2003)The binary task results in an approximately balanced
class distribution.

Following prior work on web-page classification, we link twages by co-citations (if links
to z andy links to z, thenz andy are co-citingz) (Chakrabatrti et al., 1998; Lu and Getoor, 2003).
To weight the link betweenr andy, we sum the number of hyperlinks fromto z and separately
the number fromy to z, and multiply these two quantities. For example, if studehias2 edges
to a group page, and a fellow studegnihas3 edges to the same group page, then the weight along
that path between thofestudents would bé. This weight represents the number of possible co-
citation paths between the pages. Co-citation relatiomsar uniquely useful to domains involving
documents; for example, as mentioned above, for phonetfitatection bandits often call the same

12. These labels were assigned by a naive Bayes classifi€dMen et al., 2000).
13. We use the WebKB-ILP-98 data.
14. It turns out that the relative performance of the methedgsiite different on these two variants.

15



MACSKASSY AND PROVOST

Number of web-pages
Class Cornell Texas Washington Wisconsin
student 145 163 151 155
not-student 201 171 283 193
Total 346 334 434 348
Base accuracy| 58.1% 51.2% 60.8% 55.5%

Table 7: Details on class distribution for the WebKB dataus#g binary class labels.

Number of web-pages

Category cornell texas washington wisconsin
course 54 51 170 83
department 25 36 20 37
faculty 62 50 44 37
project 54 28 39 25

staff 6 6 10 11
student 145 163 151 155
Total 346 334 434 348
Base accuracy| 41.9% 48.8% 39.2% 44.5%

Table 8: Details on class distribution for the WebKB dataus#ng6-class labels.

numbers as previously identified bandits. We chose colaitsitfor this case study based on the
prior observation that a student is more likely to have a Hirdeto her advisor or a group/project
page rather than to one of her peers (Craven et al., 1998).

To produce the final data sets, we extracted the pages thataideast one incoming and one
outgoing link. We removed pages in the “other” category ftbclassification task, although they
were used as “background” knowledge—allowihgages to be linked by a path through an “other”
page. For the binary tasks, the remaining pages were céedanto either student or not-student.
The composition of the data sets is shown in Tables 7 and 8.

3.1.4 INDUSTRY CLASSIFICATION

The final domain we draw from involves classifying public qmanies by industry sector. Compa-
nies are linked via cooccurrence in text documents. We eiteai different data sets, representing
different sources and distributions of documents and wiffetime periods (which correspond to
different topic distributions).

INDUSTRY CLASSIFICATION (YH)

As part of a study of activity monitoring (Fawcett and Prayd®999), Fawcett and Provost
collected22, 170 business news stories from the web between 4/1/1999 antO88l/ Following
the study by Bernstein et al. (2003) discussed above, wéifigeithe companies mentioned in each
story and added an edge between two companies if they apltegether. The weight of an edge is
the number of such cooccurrences found in the complete soffhe resulting network comprises

15. We return to these data in Section 3.3.5, where we showliaodss how using the hyperlinks directly is not sufficient
for any of the univariate methods to do well.
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Sector Number of companies Sector Number of companies
Basic Materials 104 Basic Materials 83
Capital Goods 83 Capital Goods 78
Conglomerates 14 Conglomerates 13
Consumer Cyclical 99 Consumer Cyclical 94
Consumer NonCyclical 60 Consumer NonCyclical 59
Energy 71 Energy 112
Financial 170 Financial 268
Healthcare 180 Healthcare 279
Services 444 Services 478
Technology 505 Technology 609
Transportation 38 Transportation 47
Utilities 30 Utilities 69
Total 1798 Total 2189
Base accuracy 28.1% Base accuracy 27.8%

Table 9: Details on class distribution forTable 10: Details on class distribution for the
industry-yh data set. industry-pr data set.

1798 companies which cooccurred with at least one other companglassify a company, we used
Yahoo!'s12 industry sectors. Table 9 shows the details of the class raeships.

INDUSTRY CLASSIFICATION (PR)

The second Industry Classification data set is base’bp8il 8 prnewswire press releases gath-
ered from April 1, 2003 through September 30, 2003. As abibMecompanies mentioned in each
press release were extracted and an edge was placed betvweeeonpanies if they appeared to-
gether in a press release. The weight of an edge is the nurhbeclo cooccurrences found in the
complete corpus. The resulting network compridg%) companies which cooccurred with at least
one other company. To classify a company, we use the sangfidaon scheme from Yahoo! as
before. Table 10 shows the details of the class memberships.

3.2 Experimental Methodology

NetKit allows for any combination of a local classifier (L@)relational classifier (RC) and a collec-
tive inferencing method (CI). If we consider an LC-RC-CI figoration to be a complete network-
classification (NC) method, we hau@ to compare on each data set. Since, for this paper, the LC
component is directly tied to the ClI component, we henckfodnsider an NC system to be an
RC-CI configuration.

We first verify that the network structure alone (linkagassgtnown class labels) often contains
a considerable amount of useful information for entity sifisation. To that end, we assess the
classification performance of each NC as we vary friifs to 90% the percentage of nodes in
the network for which class membership is known initiallyarying the amount of information
initially available assesses: (1) whether the networkcstme enables classification; (2) how much
prior information is needed in order to perform well, and \{8)ether there are regular patterns of
improvement with more labeled entities.

17
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Figure 1: Overall classification accuracies on the twelve data setsizbntal lines represent predicting the
most prevalent class. Individual methods will be clarifindsubsequent figures. The horizontal
axis plots the fractionr{) of a network’s nodes for which the class label is known exaht each
case, when many labels are known (right end) there is a se¢tifads that performs well. When
few labels are known (left end) there is much more variatioparformance. Data sets are tagged
based on the edge-type used, where ‘prodco’ is short fodymtion company’, and ‘B’ and ‘M’

in the WebKB data sets represents ‘binary’ and ‘multi-claksssifications, respectively.
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Accuracy is averaged ovan runs. Specifically, given a data sét,= (V, E), the subset of
entities with known labeld X (the “training” data séf) is created by selecting a class-stratified
random sample ofl00 x r)% of the entities inl/. The test sety’V is then defined a& —V . We
further prunel’V by removing all nodes igero-knowledgeomponents—nodes for which there is
no path to any node il X. We use the samH training/test partitions for all NC systems.

3.3 Results
3.3.1 INFORMATION IN THE NETWORK STRUCTURE

Figure 1 shows the accuracies of thHeNC systems across the data sets as the fraction)(of
entities for which class memberships are known increasesfr= 0.1 to » = 0.9. As mentioned
above, in the univariate case, if the linkage structure i&known the only non-subjective alternative
is to estimate using the class base rate (prior), which isvshiy the horizontal line in the graphs.
As is clear from Figure 1, many of the data sets contain cenalile information in the class-linkage
structure. The worst relative performance is on industrymbere at the right end of the curves the
error rate nonetheless is reduced30y40%. The best performance is on webkb-texas, where the
best methods reduce the error rate by closgtd. And in most cases, the better methods reduce
the error rate by oves0% toward the right end of the curves.

Machine learning studies on networked data sets seldoma@tpsimple network-classification
methods like these, opting instead for comparing to noatical classification. These results argue
strongly that comparisons also should be made to univanittgork classification, if the purpose is
to demonstrate the power of a more sophisticated relatleaating method.

3.3.2 GOLLECTIVE INFERENCECOMPONENT

We now compare the different collective inference comptmekiVe are not aware of theory that
makes a strong case for when one method should perform lietteranother. However, we will
be comparing classification accuracy (rather than the tyuaflithe probability estimates), so one
might expect iterative classification to outperform Gibamgpling and relaxation labeling, since the
former focuses explicitly on maximum a posteriori (MAP)sddication and the latter two focus on
estimating the joint probability distribution over the stdabels. On the other hand, with few known
labels, MAP classifications may be highly uncertain, andat/rhe better to propagate uncertainty,
as does relaxation labeling.

Figure 2 shows, for three of the data sets, the comparatiferpgances of the three collective
inference (Cl) components. Each graph is for a particulatiomal classifier. The graphs show that,
while the three Cl components often perform similarly, theirformances are clearly separated for
low values ofr.

Table 11 shows the-values for a paired t-test assessing whether the first rdefiigied in
column 1) is significantly better than the second. Speclfictdr a given data set and label ratio
(), each NC experiment consisted I¢f random train/test splits—the same for all configurations.
For each pair of Cl components, pooling thesplits across thé RC components ant? data sets
yields480 paired data points. The results show clearly that RL, adtesboard, outperformed both

16. These data set will be used not only for training modelsalso as existing background knowledge during classifi-
cation.
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Figure 2: Comparison of Collective Inference methods onlecséew data sets, with data set and
RC component listed above each graph. The horizontal lipeesents predicting the
most prevalent class.

GS and IC, often gt < 0.001. Further, we see that IC also was often better than GS, gjthoat
always significantly.

The foregoing shows that relaxation labeling is consisidmetter when the results are pooled
across Cl pairs. Table 12 shows the magnitude of the difém®nn order to be comparable across
data sets with different base rates, the table shows how miuah error reduction over the base
rate the first method (listed first in column 1) produces aspamed to the second (listed second in
column 1). As a simple example, assume the base error raté, imethod A yields an error rate
of 0.1, and method B yields an error rate @2. Method A reduces the error t§6%. Method B
reduces the error by0%. The relative error reduction of A vs. Bis5 (50% more error reduction).
More precisely, for each labeling ratio we computed the relative error reduction ratio,fgER,
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sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
RLvGS | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
RLvIC | 0.001 0.001 0.100 0.025 0.001 0.001 0.001 0.001 0.001
ICvGS| 0.200 0.300 0.100 0.050 0.4/50 0.200 0.100 0.005 0.250

Table 11: p-values for the statistical significance in differencesénfprmance between pairs of Cl
components across all data sets and RC methods. For eadboteltext means that the
first method was better than the second method and italicasiieaas worse.

sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 | overall
RL v GS 2790 1.462 1.136 1.124 1.063 1.061 1.042 1.035 1.014 1.093
RLvIC | 404.315 1.593 1.115 1.078 1.072 1.055 1.037 1.018 1.013 | 1.098
ICVvGS | 144.937 1.090 1.019 1.043 1.009 1.005 1.005 1.016 1.002 1.004

Table 12: Relative error reduction (ER;) improvements for each CI component across all data
sets. Each cell shows the ratio of the better method's esduation over the other
method'’s error reduction. As above, bold text means thdfitstamethod was better than
the second, and italics mean it was worse. The last coluneratlyis based on taking
the ratio of the average error reduction for the methodssacatl sample ratios.

between two components, £and Clz as follows.

ERAps(RC,ClLD,r) = (baseer(D) — err(RC-CI, D,r)) (12)
ERe (RC.CLD NA if ERAps(RC,CI, D,7) < 0 13
rReL(RC,.CLD,r) = ERAt?ass(;%(%)ar) otherwise (13)
1
ERreL(RC,CLT) = @ZERREL(Rc,CLD,r) (14)
DeD
1
ERgeL(Clr) = RG > ERgen(RC,ClLr) (15)
RCeRC
o0 if ERREL(ClB,T) =NAor0
FRupc(Cla. i) = {75533532”3 otherwise (16)
7)

where err(RC-CID, r) is the error for the configuration (RC and CI) on dataBewith r% of the
graph being labelled. A ratip > 1 means that C{ reduced the error by100 x (1 — p))% over
that of Clg.

Table 12, following the same layout as Table 11, shows thes&r each Cl comparison. The
unusually large entries occur when R, (Cl g, r) is very close to zero. As is clear from this table,
RL outperformed IC across the board, from as low as3& improvement{ = 0.90) to as high as
59% or better improvement(< 0.2) when averaged over all the data sets and RC methods. Overall
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sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 | total
RL 11 11 10 7 4 ) 6 4 6 64
GS 1 1 0 1 ) 3 4 4 4 23
IC 0 0 2 4 3 4 2 4 2 21

Table 13: Number of times each Cl method was the best acres? thata sets.

RL improved performance over IC by abauit’s as seen in the last column in the “RL v IC” row of
the table. RL's advantage over IC improves monotonicallieas is known in the network. Similar
numbers and a similar pattern are seen for RL versus GS. |G&nare comparabl¥.

The results so far have compared the Cl methods disregatidin&C component. Table 13
shows, for each ratio as well as a total across all ratiosydingber of times each Cl implementation
took part in the best-performing NC combination for eachhef twelve data sets. Specifically, for
each sampling ratio, each win for an RC-CI configuration ¢edras a win for the Cl module of
the pair (as well as a win for the RC module in the next sectidgtgr example, in Figure 2, the
first column of four graphs shows the performances of the 1Zdi@binations on the CoRA data;
at the left end of the curves, wwvRN-RL is the best performiambination. Table 13 adds further
support to the conclusion that relaxation labeling (RL) was overall best component, primarily
due to its advantage at low valuesrofWe also see again that Gibbs Sampling (GS) and Iterative
Classification (IC) were comparable.

3.3.3 RELATIONAL MODEL COMPONENT

Comparing relational models, we would expect to see a ceptiern: if even moderate homophily
is present in the data, we would expect wwRN to perform wésl.nbnexistent training variante
should allow it to perform relatively well, even with smalimbers of known labels in the network.
The higher-variance nLB may perform relatively poorly wémall numbers of known labels (pri-
marily because of the lack of training data, rather than lgrok with collective inference). On the
other hand, wvRN is potentially a very-high-bias classifiedoes not learn at all). The learning-
based classifiers may well perform better with large numbéknown labels if there are patterns
beyond homophily to be learned. As a worst case for wwRN, idens bipartite graph between
two classes. In a leave-one-out cross-validation, wwvRNIgvba wrong on every prediction. The
relational learners should notice the true pattern imnietjia

Figure 3 shows for four of the data sets the performancesedioilr RC implementations. The
rows of graphs correspond to data sets and the columns tbiribe different collective inference
methods. The graphs show several things, which will be fatdrinext. As would be expected,
accuracy improves as more of the network is labeled, althongertain cases classification is
remarkably accurate with very few known labels (e.g., seR&Ao One method is substantially
worse than the others. Among the remaining methods, pedocmoften differs greatly with few
known labels, and tends to converge with many known labetseMubtly, there often is a crossing
of curves when about half the nodes are labeled (e.g., selivgésn).

17. NB: it is possible for the winner in Table 11 and the winiveffable 12 to disagree (as seen for the IC and GS
comparisons at = 0.20), because the relative error reduction depends on the basendereas the statistical test
is based on the absolute values.

18. NB: there still will be variance due to the set of knowndisb
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sample ratio

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

wvRN v cdRN | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
wvRNvnBC | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
WVRN v nLB 0.001 0.001 0.001 0.001 0.300 0.001 0.001 0.001 0.001
cdRNvnBC | 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
cdRNvnLB | 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001
nLBvnBC | 0.250 0.010 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 14: p-values for the statistical significance of differencesénfprmance among the RC com-
ponents across all data sets. For each cell, bold text meanthe first method was better

than the second method and italic text means it was worse.

sample ratio
0.10 0.20 030 0.40 050 0.60 0.70 0.80 0.90 |overall
WVRN v cdRN|1.483 1.092 1.059 1.070 1.042 1.058 1.047 1.057 1.040| 1.068
WVRN v nLB oo 7.741 1.901 1.279 1.027 1.091 1.081 1.082 1.067| 1.163
cdRN v nLB oo 7.086 1.794 1.195 1.071 1.154 1.132 1.144 1.110| 1.089

Table 15: Relative error reduction (ER;) improvements for each RC component across all data
sets. Each cell shows the ratio of the better method’s egduation over the other
method’s error reduction. The last colunoverall, is based on taking the ratio of the
average error reduction for the methods across all samjpbs r&8old text means the first
method is better and italics means the second method is.bettmeans that the second

method performed worse than the base error.

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 |total

WVRN
cdRN
nLB

7
)
0

4
8
0

sample ratio
4 6 4 4
6 2 1 0
2 4 7 8

2 1
0 1
10 10

2] 34
1] 24
9| 50

Table 16: Number of times each RC implementation was thedmests thd 2 data sets.
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Figure 3: Comparison of Relational Classifiers on a selecti#ta sets. The data set (and link-type)
and the paired collective inference component is listed/@leach graph. The horizontal

line represents predicting the most prevalent class.

Table 14 shows statistical significance results, compusedezcribed in the previous section
(except here varying the RC component). Clearly, nBC wasdvsignificantly worse than the
other three RCs and is therefore eliminated from the reneaiofithis analysis. wvRN was always
significantly better than cdRN. Examining the two RN metheglsus nLB we see the same pattern:

atr = 0.5, the advantage shifts from the RN methods to nLB.

Table 15 shows the error reduction ratios for each RC comgayicomputed as in the previous
section with the obvious changes between RC and CI. The satters are evident as observed
from Table 14. Further, we see that the differences can pe:lavhen the RN methods are better,
they often are much better. The link-based classifier aladeaconsiderably better than wwRN—
however, we should keep in mind that wwRN does not learn!
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sample ratio
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 | total
WVRN-IC 0 0 0 0 0 0 0 0 1 1
WVRN-GS 1 1 0 1 3 0 0 0 0 6
WVRN-RL 6 3 4 ) 1 4 2 1 1 27
cdRN-IC| 0 0 0 0 0 0 0 0 0 0
cdRN-GS| 0 0 0 0 0 0 0 0 0 0
cdRN-RL 5 8 6 2 1 0 0 1 1 24
nBC-IC 0 0 0 0 0 0 0 0 0 0
nBC-GS| 0 0 0 0 0 0 0 0 0 0
nBC-RL| 0 0 0 0 0 0 0 0 0 0
nLB-IC 0 0 2 4 3 4 2 4 1 20
nLB-GS 0 0 0 0 2 3 4 4 4 17
nLB-RL 0 0 0 0 2 1 4 2 4 13

Table 17: Number of times each RC-CI configuration was thed®@ess thd 2 data sets.

sample ratio
0.10 0.20 030 040 0.50 0.60 0.70 0.80 0.90
WVRN-RL v cdRN-RL| 0.400 0.002 0.400 0.400 0.999 0.300 0.100 0.005 0.001
WVRN-RL vnLB-IC |0.001 0.001 0.001 0.100 0.050 0.001 0.001 0.001 0.001
WVRN-RL v nLB-GS |0.001 0.001 0.001 0.001 0.100 0.050 0.005 0.001 0.001
WVRN-RL v nLB-RL |0.001 0.001 0.001 0.001 0.200 0.001 0.001 0.001 0.001
cdRN-RL v nLB-IC |0.001 0.001 0.001 0.050 0.050 0.001 0.001 0.001 0.001
cdRN-RL v nLB-GS |0.001 0.001 0.001 0.001 0.100 0.020 0.001 0.001 0.001
cdRN-RL v nLB-RL |0.001 0.001 0.001 0.001 0.200 0.001 0.001 0.001 0.001
nLB-IC v nLB-GS |0.001 0.001 0.001 0.001 0.025 0.200 0.300 0.100 0.200
nLB-IC vnLB-RL |0.001 0.001 0.001 0.001 0.025 0.999 0.999 0.050 0.020
nLB-RL v nLB-GS |{0.999 0.050 0.250 0.025 0.300 0.100 0.200 0.300 0.050

Table 18: Statistical significance of differences in parfance among the four best RC-CI config-
urations across all data sets. For each cell, normal texhsieat the first method was
better than the second method and italic text means it wasewor

Table 16 shows how often each RC method participated in tsischenbination, as described in
the previous section. nLB is the overall winner, but we seestime clear pattern that the RN meth-
ods dominate for fewer labels, and nLB dominates for moreltlwith the advantage changing
hands at = 0.5.

3.3.4 INTERACTION BETWEEN COMPONENTS

Table 17 shows how many times each of the twelve individual®@€onfigurations was the best,
across the twelve data sets and nine labeling ratios. Fiaégtmations stand out: wvRN-RL,
cdRN-RL, and nLB with any of the Cl methods. Table 18 and TABleompare these five methods
analogously to the previous sections. (Here, each cell deegl20 data points gathered from
the 12 data sets time$0 runs.) The clear pattern is in line with that shown in the psections,
showing that of this set of best methods, the RN-based methwck! for fewer labeled data, and
the nLB-based methods excel for more labeled data.
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sample ratio

0.10 0.20 030 040 0.50 0.60 0.70 0.80 0.90 |overall

WVRN-RL v cdRN-RL| 1.238 1.165 1.042 1.025 1.009 1.002 1.003 1.020 1.027| 1.028
WVRN-RL v NLB-IC [4.120 1.937 1.208 1.045 1.041 1.070 1.066 1.068 1.057| 1.070
WVRN-RL v nLB-GS o0 oo 3.659 1.724 1.052 1.054 1.062 1.076 1.063| 1.370
WVRN-RL v nLB-RL 00 oo 3.390 1.573 1.031 1.074 1.070 1.077 1.068| 1.331
cdRN-RLvNLB-IC |[5.081 2.257 1.259 1.071 1.032 1.068 1.069 1.090 1.086| 1.100
cdRN-RL v nLB-GS 00 oo 3.813 1.767 1.061 1.052 1.065 1.098 1.092| 1.409
cdRN-RL v nLB-RL o0 oo 3.533 1.612 1.040 1.072 1.074 1.098 1.096| 1.369
nLB-IC v nLB-GS o0 oo 3.028 1.649 1.095 1.015 1.004 1.007 1.005| 1.281
nLB-IC v nLB-RL 00 oo 2.805 1.505 1.074 1.004 1.004 1.008 1.010| 1.245
nLB-RL v nLB-GS NA NA 1.079 1.096 1.020 1.019 1.008 1.001 1.004| 1.029

Table 19: Relative error reduction (ER;) improvements for thé best RC-CI configurations
across all data sets. Each cell shows the ratio of the bet#had’'s error reduction
over the other method’s error reduction. The last columeyal; is based on taking the
ratio of the average error reduction for the methods acrtbsmample ratios. Bold text
means the first method was better and italics menas the segetitbd was betteroo
means that the second method performed worse than the bageaad a value of “NA”
indicates that both performed worse than the base error.)

In addition, these results show that the RN-methods cledrbuld be paired with RL. nLB,
on the other hand, does not favor one Cl method over the otl@ne possible explanation for
the superior performance of the RN/RL combinations is tHasiply performs better with fewer
known labels, where propagating uncertainty may be esieaiarthwhile as compared to working
with estimated labelings. However, this does not hold foBrflvhere, as more labels are known,
RL performs comparably better than IC or GS). Thereforeetineust be a more subtle interaction
between the RN methods and the Cl methods. This remains teptereed.

Following up on these results 2away ANOVA shows a strong interaction between RC and ClI
components for most data sets for small numbers of labelddsy@s would be expected given the
strong performance of the specific pairings wwRN-RL and celN As more nodes are labeled,
the interaction becomes insignificant for almost all data,s&s might be expected given that nLB
dominates but no ClI component does. The ANOVA suggests tinatefry many known labels, it
matters little which CI method is used.

3.3.5 WHEN THINGS GO WRONG

To create homogeneous graphs, we had to select the edges tAsusientioned briefly above, the
type of edge selected can have a substantial impact onfidaisn accuracy. For these data sets,
the worst case (we have found) occurs for WebKB. As describe&ection 3.1.3, for the results
presented so far we have used co-citation links, based ana@i®ons in prior published work. An
obvious alternative is to use the hyperlinks themselves.

Figures 4 and 5 show the results of using hyperlinks instéad-gitation links. The network-
classification methods perform much worse than in the prsviExperiments. Although there is
some lift at large values of, especially for the Washington data, the performance icootpara-

26



CLASSIFICATION IN NETWORKED DATA

cornellM_orig texasM_orig
1 i 1
0.8 0.8
>
g 06
5
3 04r
<
0.2
0 : : : ‘ 0 : : : :
0 02 04 06 08 1 0 02 04 06 038 1
washingtonM_orig wisconsinM_orig
1 i 1
0.8 ¢ 108
oy
g 06 1 0.6
5
8 04¢t 0.4
< _ L
02t {02} 1
0 : : : : 0 : : : :
0 02 04 06 08 1 0 02 04 06 08 1
Ratio Labeled Ratio Labeled

Figure 4: Performances on WebKB multi-class problems usymgrlinks as edges.
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Figure 5: Performances on WebKB binary-class problemgusyperlinks as edges.

ble to that with the co-citation formulation. The transfation from the hyperlink-based network
to the co-citation-based network adds no new informatiothéograph. However, in the hyper-
link formulation the network classification methods cantadie full advantage of the information
present—mainly because of the first-order Markov assumptiade by the relational classifiers.
These results demonstrate that the choice of edges candal dan good performance.
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3.3.6 FELECTING EDGES

Creating a graph with a single type of edge from a problem warious possible links exist is
a representation engineering problem reminiscent of theecigen of a small set of useful features
for traditional classificatioA® For feature selection, practitioners use a combinationaofi@n
knowledge and trial and error to select a good representalio create the networked data for our
study, we chose edges based on suggestions from prior wohiekwndirectly combines domain
knowledge and prior trial and error, although we expliciélyoided choosing the representations
based on their performance using NetKit.

Pursuing the analogy with choosing features, it may be plest select edges automatically. It
is beyond the scope of this paper to address the general émgamportant) problem of edge selec-
tion; however, the excellence (on these data sets) andisitppf wwRN suggests straightforward
techniques.

If we consider the data sets used in the study, all but thestnglelassification data sets have
more than one type of edge:

1. cora: We linked entities through citationsife). Alternatively, we could have linked by the
sharing of an authom{ithor), or by either relationship (combined as a single genenic)li

2. imdb: There are many types of ways to connect two movies, but wasfbere on four that
were suggested to us by David Jensantor, director, producerand production company
(prodcg. Again, we could use any or all of them (we do not considepafisible combina-
tions here).

3. WebKB: Based on prior work, we chose co-citationt®¢ite for the case study and later
showed that the original hyperlinkky(pep were a poor choice.

Kohavi and John (1997) differentiate between wrapper agres and filter approaches to fea-
ture selection, and this notion extends directly to edgect®in. For any network classification
method we can take a wrapper approach, computing the emactien overGX using cross-
validation. wvRN is an attractive candidate for such an apph, because it is very efficient and
requires no training; we can use a simple leave-one-ou} @stimation.

The homophily-based wvRN also lends itself to a filter apphpaelecting the edge type simply
by measuring the homophily i&. Heckathorn and Jeffi (2003) define a homophily index, but it
computes homophily for a specific group, or class, rathear éhgeneral value across all classes. The
assortativity coefficienfNewman, 2003) is based on the correlation between theeddissked by
edges in a graph. Specifically, it is based on the graph’stassity matrix—a CxC matrix, where
celle;; represents the fraction of (all) edges that link nodes afszlato nodes of class;, such that

19. We required a single edge type for our homogeneous cadg dtis reasonable to conjecture that even if heteroge-
neous links are allowed, a small set of good links would béepable. For example, a link-based classifier produces
a feature vector representation with multiple positionslipé type.
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mean meah Assortativity ERREL ERREL

base num edge node(edge) (node)loo (wvRN)|wvRN at
Data set size acc| edges weight degree Ag Anx| r=0.90|r=0.90
COlaie 3583 0.297(22516 2.061 6.284] 0.737 0.642 0.5373]  0.805
cora, 4025 0.315|71824 2.418 17.844| 0.656 0.656 0.6122 0.767
COluthor 3604 0.317|56268 2.262 15.613| 0.623 0.558 0.4662 0.711
imdbyodco 1169 0.511]40634 1.077 34.760| 0.501 0.392 0.3711 0.647
imdBproducers 1195 0.520(13148 1.598 11.003| 0.283 0.389 0.3618 0.547
imdb,; 1377 0.564192248 1.307 66.992| 0.279 0.308 0.3415 0.531
imdbyirectors 554 0.549| 826 1.031 1.491| 0.503 0.210 0.0369 0.498
imdb,ciors 1285 0.541|48354 1.135 37.630( 0.131 0.174 0.1372 0.246
cornellB,j 349 0.585(27539 3.000 78.908| 0.325 0.399 0.5655 0.629
cornellB.ocite 346 0.581|26832 2.974 77.549| 0.360 0.394 0.5345 0.618
cornellB,yper 349 0.585| 1393 2.349 3.991|-0.169 —0.068 —0.1621] —-0.114
cornellM,;; 349 0.415|27539 3.000 78.908| 0.219 0.286 0.3209 0.382
cornellMegcite 346 0.419|26832 2.974 77.549| 0.227 0.273 0.2481 0.366
cornellMyy per 349 0.415| 1393 2.349 3.991| 0.054 0.102 —0.2883| —0.212
texasB,ite 334 0.512]32988 2.961 93.766| 0.577 0.617 0.7166| 0.819
texasBy 338 0.51833364 2.995 98.710| 0.523 0.585 0.6939 0.768
texasByper 285 0.547| 1001 2.605 3.512|—0.179 —0.114 —0.1368| —0.232
texasMocite 334 0.488|32988 2.961 98.766| 0.461 0.477 0.3737 0.475
texasM 338 0.482(33364 2.995 98.710( 0.420 0.458 0.3874 0.466
texasMuyper 285 0.453| 1001 2.605 3.512(—0.033 —0.044| —0.6583| —0.490
washingtonBy 434 0.652|31253 3.800 72.012| 0.388 0.455 0.4225 0.530
washingtonB,cite | 434 0.652(30462 3.773 70.189| 0.375 0.446 0.3940 0.477
washingtonBy .. | 433 0.651| 1941 2.374 4.483|—-0.095 0.076| —0.1126] —0.069
washingtonMocite | 434 0.392(30462 3.773 70.189| 0.301 0.359 0.3481 0.503
washingtonMj, 434 0.392|31253 3.800 72.012| 0.331 0.377 0.4023 0.453
washingtonMype, | 433 0.390| 1941 2.374 4.483| 0.084 0.233| —0.0167 0.004
wisconsinBy; 352 0.560|33587 3.543 95.418| 0.524 0.587 0.7219 0.855
wisconsinB,cie 348 0.555(33250 3.499 95.546| 0.673 0.585 0.7168 0.788
wisconsinB, per 297 0.616| 1152 2.500 3.879|—0.147 —0.103 —0.2123| —-0.331
wisconsinM.ocite 348 0.445(33250 3.499 95.546| 0.577 0.489 0.4286 0.544
wisconsinM 352 0.440|33587 3.543 95.418| 0.416 0.474 0.4518 0.503
wisconsinM,yper 297 0.384| 1152 2.500 3.879| 0.160 0.021 —0.4729| —-0.275
# mistakes | | | 5 2] 4]

Table 20: Assortativity details on data sets across varge types. Each data set grouping is
sorted on ERgr,. Ag, Ay andE Rggy, values were all averaged over th@data splits
used throughout the case study. The leave-one-out measedieonlyG” to calculate
the E Rrgr, value.
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>_i; €ij = 1. The assortativity coefficient g, is calculated as follows:

a; = Z €ij (18)
J
bj = Z eij (19)
o 2iti— 0,0 bi
Ap = =S as by (20)

Apr measures homophily across edges, while wvRN is based ongiulpacross nodes. Itis
possible to create (sometimes weird) graphs with tghbut for which wvRN performs poorly,
and vice versa. However, we can modiy; to be anode-based assortativigoefficient, A 5, by
definingejj, a node-based cell-value in the assortativity matrix devi:

el = %RV(Xi)j, 21)
where RX;); is the j't element in RVX;) as defined in Equation 4, and is a normalizing
constant such that adf; sum tol.

To assess their value for edge selection for wwRN, we comigteerror reduction for each
different edge type (and all edges) for the benchmark ddsta ard compare the best with that of
the edge selected by each of these three methodsA4lepA ). In Table 20 the first six columns
show the data set, the number of nodes, the base accuracyriieer of edges, the average edge
weight, and the average node degree. The next columns dhcand A y. The next column shows
the estimated ER:1, value based on the leave-one-out estimation, and the lashoosshows the
ERggL values on the test set. Each data set group is sorted by thg Frerformance on its various
edge types, so the top row is the “best” edge selection. Nwaieds the edge types differ, we get
different connectivities and different coverages, andckdtifferent the values are not completely
comparable.

The results show that the links used in our study generaflylted in the highest node-based
assortativity’® Ay in 8 out of 10 cases chose the best edge. In the two cases where this was not
the case, the differences in kR, were small. Neither the leave-one-out (loo) method Agr
performed as well, but they nevertheless yield networks bittvwwvRN performs relatively well.
Notice that for IMDb, althoughlirector has the highest g, it also has very low coverage (orii4
nodes were connected), and with such a slight differencesorgativity between that angtodco
there should be no question which should be used for cles$ific Ay and the leave-one-out
estimates are much more volatile thdp as the amount of labeled data decreases, because there
typically are many more edges than nodes. If we believe Swrgativity is relatively stable across
the network, it may be beneficial to ugle; when little is known. However, for our data setsy
performs just as well ad  even when- = 0.1.

3.4 The Case for Network-Only Baseline Methods

On the benchmark data sets, error rates were reduced matkedhking into account only the
class-linkage structure of the network. This argues styoiog using simple, network-only models

20. We had picked the edge types for the study before penfigrhis analysis. However, common sense and domain
knowledge lead one to conclude that the edge types we uskd gase study would have high assortativity.
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Figure 6: Comparison of wwRN to RBN (PRM) (Taskar et al., 200The graph shows wvRN
using both citation and author links as in the original stutlye “pruned” results follow
the methodology of the case study in this paper by removing-keowledge components
and singletons from the test set.

as baselines in studies of more complex methods for cleaatsificin networked data. For example,
consider CoRA. In a prior study, Taskar et al. (2001) showdhalational Bayesian network (RBN),
there called a Probabilistic Relational Model (PRM), wakedb achieve a higher accuracy than a
non-relational naive Bayesian classifier fo= {0.1,...,0.6}. However, as we saw above, the
no-learning wvRN performed quite well on this data set. Fégh compares the accuracies of the
RBN (transcribed from the graphs in the paper) with wvRN. \&% slearly that wwRN was able
to perform comparabl§* This demonstrates that CoRA is not a good data set to shoviicase
advantages of RBNs for classification. Had a method such &Nnbwveen readily available as a
baseline, then Taskar et al. would most likely have used & rmppropriate data set.

More generally, this study has not demonstrated that theisehiimark data sets hold little value
for studying within-network learning. However, wwvRN doest & high bar for studying more-
complicated methods for learning classification modelgtiese data sets.

3.5 Limitations

As mentioned earlier, we would like to be able to charactgniaw much classification ability comes
from the structure of the network alone. We have examinethédd notion of using the structure
of the network. These methods all assume that “the powereof#twork” can be reduced to “the
power of the neighborhood,” bolstered by collective infexe, rather than using relational models

21. The “pruned” results show the accuracy after elimirgatite zero-knowledge components, for which wvRN can only
predict the most prevalent class.
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that look deeper. Furthermore, we only considered links @dass labels—we did not consider
identifying the individual nodes. Networked data allow ttentities of particular related entities
to be used directly in classification and learning—beingdithto Mohammed Atta is informative
(Perlich and Provost, 2004).

In the homogeneous, univariate case study we have ignoreth wfuthe complexity of real
networked data, such as heterogeneous edges, heterogemetms, directed edges, and attributes
of nodes and edges. Each of these introduces complicatimhsp@ortunities for modeling. There
are too few comprehensive machine learning studies thaidenthese dimensions systematically.
For example, when using attributes of nodes, how much isegaty using them in the relational
classifier, as opposed to using them simply to initializes? (For example, Chakrabarti et al.
(1998) found that using the text of hyperlinked documentiiced performance.) Similarly, how
much value is added by considering multiple edge types @xpk

An important limitation of this work, with respect to its esfance to practical problems, is
that we randomly choose training data to be labeled. It Eyikhat the data for which labels are
available are interdependent. For example, all the menfa@mrsone terrorist cell may be known
and none from another. If other attributes are availableenumiformly, then studies such as this
may artificially favor network-only methods over attribtiiased methods.

Another limitation of this study is that we have not completexplained the very poor per-
formance of nBC (used by Chakrabarti et al. (1998)). Ourttneat of zeros does not seem to be
the culprit; for example, zeros are rare in the binary cfasdion problems. As with naive Bayes
more generally, the posterior estimates typically aresemtr and this is exacerbated by having many
neighbors (as one would expect if the independence assumigtgrossly violated). Poorly cali-
brated probability estimates are problematic for the ctilfe inference methods—for example, con-
sider Gibbs sampling given posteriors comprising essigndaros and ones. We are investigating
this further.

3.6 Conclusions and Future Work

We introduced a modular toolkit, NetKit-SRL, for classifica in networked data. The importance
of NetKit is three-fold: (1) it generalizes several exigtimethods for classification in networked

data, thereby making comparison to existing methods ples$) it enables the creation and use of
many new algorithms by its modularity and extensibility; &ample as demonstrated with nLB-
GS, nLB-RL, and cdRN-RL, which were among the five best nétvetaissifiers in the case study,

and (3) it enables the analysis/comparison of individuatjgonents and configurations.

We used NetKit to perform a case study of within-networkyvariate classification for homo-
geneous networked data. The case study makes severabatiotis. It provides demonstrative
support for points 2 and 3 above. By comparing the variouspmmants and combinations, clear
patterns appear. Certain collective inference and relaticassification components stand out with
consistently better performance: for Cl, relaxation laigelvas best; for RC, the link-based clas-
sifier was clearly preferable when many labels were knowre [6tver-variance methods (wvRN
and cdRN) dominated when fewer labels were known. In contibinafive RC-CI methods stand
out strikingly: nLB with one of the Cl methods dominates wineany labels are known; wwRN-RL
and cdRN-RL dominate when fewer labels are known.

More generally, the results showcase two different modestbfn-network classification: cases
when many labels are known ex ante versus cases where fem@re kThe former scenario may
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correspond (for example) to networks that evolve over tinte wew nodes needing classification,
as would be the case for predicting movie box-office recelpxamples of the little-known scenario
can be found in counter-terrorism and law enforcement, e/bealysts form complex interaction
networks containing a few, known bad guys. The little-kn@®anario has an economic component,
similar to active learning: it may be worthwhile to incur t®$o label additional nodes in the
network, because this will lead to much improved classificat This suggests another direction
for future work—identifying the most beneficial nodes fdoéding (cf., Domingos and Richardson
(2001)).

The case study also showcases a problem of representatioetf@ork classification: the se-
lection of which edges to use. It is straightforward to egt&etKit's RC methods to handle het-
erogeneous links. However, that would not solve the funddahgroblem that edge selection,
like feature selection for traditional learning, may imypgaeneralization performance (as well as
provide simpler models).

Finally, the case study demonstrated the power of simpl&orktclassification models. On
the benchmark data sets, error rates were reduced markgthiking into account only the class-
linkage structure of the network. No attribute informatisas used. Although learning helped in
many cases, the no-learning wwRN was a very strong competjierforming very well when few
labels were known. This argues strongly for using simpléwagk-only models as baselines in
studies of classification in networked data. It also callsamthe question of whether we need more
powerful methods or “better” benchmark data sets.

Classification in networked data is important for real-waalpplications, and presents many
opportunities for machine-learning research. The fieldeigitming to amass benchmark domains
containing networked data. We hope that NetKit can fatditystematic study.

Acknowledgments

David Jensen made many helpful suggestions, includingipgins to the WebKB data set and sug-
gesting ways to do well on it. Abraham Bernstein collabatate the generation of the two industry
classification data sets. Kaveh R. Ghazi worked diligenbigicg the open-source NetKit and en-
suring that it would be ready for release on schedule. WektBam Taskar and Andrew McCallum
for providing us with versions of the Cora data set. ThankSugato Basu, Misha Bilenko, Pedro
Domingos, Joydeep Ghosh, David Jensen, Andrew McCallummifde Neville, Mark Newman,
Claudia Perlich, and audience members of talks for helgdoiments and discussions.

This research was sponsered in part by the Air Force Reskalmratory, Air Force Materiel
Command, USAF, under Agreement number F30602-01-2-0588.views and conclusions con-
tained herein are those of the authors and should not bieted as necessarily representing the
official policies or endorsements, either expressed oriagdplof AFRL or the U.S. Government.
This work was also funded in part by a grant from the New Yorkwware Industry Association.

References

J. C. Almack. The Influence of Intelligence on the SelectibAssociatesSchool and Socieyl 6:
529-530, 1922.

A. Bernstein, S. Clearwater, S. Hill, C. Perlich, and F. giv Discovering Knowledge from
Relational Data Extracted from Business News. Phoceedings of the Multi-Relational Data

33



MACSKASSY AND PROVOST

Mining Workshop (MRDM) at the Eighth ACM SIGKDD Internatd@onference on Knowledge
Discovery and Data Mining2002.

A. Bernstein, S. Clearwater, and F. Provost. The Relativeator-space Model and Industry Clas-
sification. InProceedings of the Learning Statistical Models from Retwl Data Workshop
(SRL) at the 19th International Joint Conference on Artifi¢htelligence (IJCAI) pages 8-18,
2003.

P. M. Blau. Inequality and Heterogeneity: A Primitive Theory of So8alucture New York: Free
Press, 1977.

H. Bott. Observation of Play Activities in a Nursery SchoGenetic Psychology Monographs
44-88, 1928.

Y. Boykov, O. Veksler, and R. Zabih. Fast Approximate Enevtigimization via Graph CutdEEE
Transactions on Pattern Analysis and Machine Intellinge(AMI), 23(11), November 2001.

S. Chakrabarti, B. Dom, and P. Indyk. Enhanced Hypertexé@atzation Using Hyperlinks. In
ACM SIGMOD International Conference on Management of Dh898.

C. Cortes, D. Pregibon, and C. T. Volinsky. Communities ¢éitast. InProceedings of Intelligent
Data Analysis (IDA)2001.

M. Craven, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, @. Y. Quek. Learning to Extract
Symbolic Knowledge from the World Wide Web. lirbth Conference of the American Associa-
tion for Atrtificial Intelligence 1998.

R. L. Dobrushin. The Description of a Random Field by Mean€ohditional Probabilities and
Conditions of its RegularityTheory of Probability and its Applicatiori3(2):197-224, 1968.

P. Domingos and M. Richardson. Mining the network value aftemers. InProceedings of the
Seventh ACM SIGKDD International Conference on Knowledgedery and Data Mining
pages 57-66. CA: ACM Press, 2001.

P. Domingos and M. Richardson. Markov Logic: A Unifying Framork for Statistical Relational
Learning. InProceedings of the ICML-2004 Workshop on Statistical Refal Learning and its
Connections to Other Fieldpages 49-54, 2004.

S. Dzeroski and N. Lavradkelational Data Mining Berlin; New York: Springer, 2001.

W. Emde and D. Wettschereck. Relational Instance-Basedhltep In Lorenza Saitta, editor,
Proceedings of the 13th International Conference on Maehisarning (ICML) pages 122-130.
Morgan Kaufmann, 1996.

T. Fawcett and F. Provost. Adaptive fraud detecti@ata Mining and Knowledge Discoverg:
291-316, 1997.

T. Fawcett and F. Provost. Activity monitoring: Noticingenesting changes in behavior. Pmo-
ceedings of the Fifth ACM SIGKDD International Conferenndkmowledge Discovery and Data
Mining, 1999.

34



CLASSIFICATION IN NETWORKED DATA

P. A. Flach and N. Lachiche. 1BC: A First-Order Bayesian €ifas. In Saso Dzeroski and Peter A.
Flach, editorsProceedings of the Ninth International Workshop on Induetiogic Programming
(ILP), volume 1634, pages 92-103. Springer-Verlag, June 1999.

N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. LearningpBabilistic Relational Models. In
Sixteenth International Joint Conference on Artificialdiigence (IJCAI) 1999.

S. Geman and D. Geman. Stochastic relaxation, Gibbs dittrits and the Bayesian restoration of
images.|EEE Transactions on Pattern Analysis and Machine Intghince (PAMI)6:721-741,
1984.

W. R. Gilks, S. Richardson, and D. J. Spiegelhalkarkov Chain Monte Carlo in PracticeChap-
man & Hall/CRC, 1995.

D. D. Heckathorn and J. Jeffi. Jazz networks: Using respdrdiéren sampling to study stratifica-
tion in two jazz musician communities. lmerican Sociological Association meetingsigust
2003.

D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, @ndékadie. Dependency Networks
for Inference, Collaborative Filtering, and Data Visuatipn. Journal of Machine Learning
Research (JMLR):49-75, October 2000.

D. Jensen and J .Neville. Data Mining in Social Networks. Niational Academy of Sciences
workshop on Dynamic Social Network Modeling and Ana)\Zi$?2a.

D. Jensen and J. Neville. Linkage and Autocorrelation C&gsgure Selection Bias in Relational
Learning. InProceedings of the 19th International Conference on Maghiaarning (ICML)
2002b.

D .Jensen, J. Neville, and B. Gallagher. Why Collective Hefee Improves Relational Classi-
fication. InProceedings of the 10th ACM SIGKDD International Confeeenn Knowledge
Discovery and Data Mining2004.

R. Kohavi and G. John. Wrappers for Feature Subset Seleditificial Intelligence special issue
on Relevanced7(1-2):273-324, 1997.

D. Koller and A. Pfeffer. Probabilistic Frame-Based Systein AAAI/IAAI pages 580-587, 1998.

S. Kramer, N. Lavrac, and P. Flach. Propositionalizatiopragches to relational data mining.
In Saso Dzeroski and Nada Lavrac, editd®glational Data Mining pages 262—-291. Springer-
Verlag, 2001.

J. Lafferty, A. McCallum, and F. Pereira. Conditional RamdBields: Probabilistic Models for
Segmenting and Labeling Sequence DataPioceedings of the 18th International Conference
on Machine Learning (ICML)2001.

P. Lazarsfeld and R. K. Merton. Friendship as a Social Peode$Substantive and Methodological
Analysis. In Morroe Berger, Theodore Abel, and Charles HyeRaditorsFreedom and Control
in Modern Societypages 18—66. Van Nostrand, 1954.

35



MACSKASSY AND PROVOST

C. P. Loomis. Palitical and Occupational Cleavages in a Manan Village. Sociometry9:316—
3333, 1946.

Q. Lu and L. Getoor. Link-Based Classification. Pmoceedings of the 20th International Confer-
ence on Machine Learning (ICML2003.

S. A. Macskassy and F. Provost. A Simple Relational Classifie Proceedings of the Multi-
Relational Data Mining Workshop (MRDM) at the Ninth ACM SIDIKInternational Conference
on Knowledge Discovery and Data Minin2003.

A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automatihg Construction of Internet
Portals with Machine Learningnformation Retrieval3(2):127-163, 2000.

M. McPherson, L. Smith-Lovin, and J. M. Cook. Birds of a FeatitHomophily in Social Networks.
Annual Review of Sociolog27:415-444, 2001.

K. Murphy, Y. Weiss, and M. |. Jordan. Loopy Belief-propagatfor Approximate Inference: An
Empirical Study. In K. B. Laskey and H. Prade, editd®?mceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence (UAIMorgan Kaufmann, 1999.

J. Neville and D. Jensen. Iterative Classification in Refadl Data. IPAAAI Workshop on Learning
Statistical Models from Relational Datpages 13-20, 2000.

J. Neville and D. Jensen. Collective Classification withad®ehal Dependency Networks. Rro-
ceedings of the Second Workshop on Multi-Relational Datardi(MRDM-2003) at KDD-2003
2003.

J. Neville and D. Jensen. Dependency Networks for Reldtidata. InProceedings of the Fourth
IEEE International Conference in Data Mining (ICDM004.

J. Neville, D. Jensen, L. Friedland, and M. Hay. LearningaiRehal Probability Trees. IRroceed-
ings of the Ninth ACM SIGKDD International Conference on Wiexlge Discovery and Data
Mining, 2003.

M.. J. Newman. Mixing patterns in networkBhysical Review 7, 2003. 026126.
J. Pearl.Probabilistic Reasoning in Intelligent SystenMorgan Kaufmann, 1988.

C. Perlich. Citation-Based Document ClassificationWarkshop on Information Technology and
Systems (WITS2003.

C. Perlich and F. Provost. Aggregation-based feature timemnd relational concept classes. In
KDD, 2003.

C. Perlich and F. Provost. ACORA: Distribution-based Aggtion for Relational Learning from
Identifier Attributes. Technical Report CeDER Working Pa@eDER-04-04, Stern School of
Business, New York University, 2004.

A. Popescul and L. H. Ungar. Statistical Relational Leagrior Link Prediction. InProceedings of
the Learning Statistical Models from Relational Data Wdriqs (SRL) at the 19th International
Joint Conference on Atrtificial Intelligence (IJCABD003.

36



CLASSIFICATION IN NETWORKED DATA

F. Provost, C. Perlich, and S. A. Macskassy. RelationalriegrProblems and Simple Models. In
Proceedings of the Learning Statistical Models from Relal Data Workshop (SRL) at the 19th
International Joint Conference on Artificial IntelligenfidCAIl), pages 116—-120, 2003.

L. De Raedt, H. Blockeel, L. Dehaspe, and W. Van Laer. Threepamions for data mining in first
order logic. In Saso Dzeroski and Nada Lavrac, editeedational Data Miningpages 105-139.
Springer-Verlag, 2001.

H. M. Richardson. Community of Values as a Factor in Frieipsbf College and Adult Women.
Journal of Social Psychology1:303-312, 1940.

J. Rocchio. Relevance feedback in information retrieval Salton, editorThe SMART Retrieval

System: Experiments in Automatic Document Processimapter 14, pages 313-323. Prentice—
Hall, 1971.

L. J. SavageThe Foundations of Statisticdohn Wiley and Sons, 1954.

B. Taskar, P. Abbeel, and D. Koller. Discriminative Prolbabtc Models for Relational Data. In
Eighteenth Conference on Uncertainty in Atrtificial Intgénce (UAI) August 2002.

B. Taskar, E. Segal, and D. Koller. Probabilistic Classtf@aand Clustering in Relational Data. In
Proceedings of the 17th International Joint Conference difidial Intelligence (IJCAI) pages
870-878, 2001.

G. Winkler. Image Analysis, Random Fields and Markov Chain Monte Cardthdds Springer-
Verlag, 2nd edition, 2003.

I. H. Witten and E. Frank. IIData Mining: Practical machine learning tools with Java ilemen-
tations Morgan Kaufmann, San Francisco, 2000.

Appendix A. Glossary

cdRN Class Distribution Relational Neighbor Classifier. Seetia.4.1.

CI Collective Inference Method. See Section 2.4.2.

D A data set. See Section 3.2.

DX What is known aboub. See Section 3.2.

DY What is not known (and hence what needs to be predicted) dhoBee Section 3.2.
GS Gibbs Sampling. See Section 2.4.2.

IC Iterative Classification. See Section 2.4.2.

LC Local Classifier. See Section 2.1.

nBC Network-only Bayes Classifier. See Section 2.4.1.

NC Network-Classification System. An LC-RC-CI combinatioreSsection 3.2.
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nLB Network-only Linked-Based Classifier. See Section 2.4.1.

r The ratio of data which is known in the network. See Secti@nl3.
RC Relational Classifier. See Section 2.4.1.

RL Relaxation Labeling. See Section 2.4.2.

WVRN Weighted Vote Relational Neighbor Classifier. See Sectidril2

Appendix B. Implementation Notes Regarding NetKit

This section describes in more detail the primary modules.
The current version of NetKit can be obtained from the priyrauthor of this paper. We are
currently getting the toolkit ready to be released as omemes (Java 1.5).

B.1 Input Module

This module reads in the given data and represents it as &.giidjs module supports heteroge-
neous edges and nodes although the classification algsralirassume homogeneous nodes. The
edges can be weighted and/or directed.

The data input that the toolkit currently supports consi$ts set of flat files, with a schema file
defining the overall schema and the files where to read thefrdata Each node type and edge type
are in separate flat files.

B.2 Local Classifier (LC) Module

The Local Classifier (LC) module is a general applicationgpaonming interface (API), which
enables the implementation of “local” classifiers.

The API consists of two main interface methodsluceModel(  VX) andestimate( v),
wherew is a vertex in the graph for which to predict the class attabu

The induceModel(  VX) methods takes as its input a set of verticés;, and induces an
internal model M 1, which can be used to estimalz|v).

Theestimate( wv;) method takes as its input a vertex in the graph and returnsraatiaed
vector,c, where thek-th item, ¢(k), corresponds to the probability thattakes on the categorical
class valueX;, € X.

The toolkit, through the Weka wrapper described belowyfsillpports the use of any classifiers
available in Weka. The toolkit, for experimental purposasp has the three strawman classifiers
which predict a uniform prior, the class prior, ull

Extending NetKit by creating a new local classifier requires one to create asnbelass of the
generic NetKit classifier (Classifierlmp) and write a minimof 5 methods:

1. public String getShortName()
2. public String getName()
3. public String getDescription()

4. public boolean estimate(Node node, double[] result)
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5. public void induceModel(Graph g, DataSplit split)

Once a new class has been created, it must be addedltdasifier.properties config-
uration file to let NetKit know about its existence.

B.3 Relational Classifier (RC) Module

As with the LC module, the Relational Classifier (RC) modwdeaigeneral APl which enables
the implementation of relational classifiers. As with LCe tilmodule consists two main methods:
induceModel( G¥) andestimate( v) .

TheinduceModel( V) methods takes as its input the set of vertidé§,, and induces an
internal model M g, which can be used to estima®x|v).

Theestimate( v;) method takes as its input the vertexand returns a normalized vector,
c;, Where thek-th item, ¢;(k), corresponds to the probability that takes on the categorical class
valueX, € X.

The toolkit fully supports the use of any Weka classifiersicltare turned into relational clas-
sifiers through the use of aggregation of neighbor attribute

This module can be configured to aggregate only on the clasisué® or on all neighbor at-
tributes. It currently only supports aggregation of dineeighbors. It can further be configured to
not make use of intrinsic variables, for experimental stadiuch as the one performed in this paper.

Extending NetKit by creating a new relational classifier requires one to eraatew subclass
of the generic NetKit network classifier (NetworkClassifigp) and write a minimum of 6 methods:

1. public String getShortName()
2. public String getName()
3. public String getDescription()
4. public boolean includeClassAttribute()
5. public boolean doEstimate(Node node, double[] result)
6. public void induceModel(Graph g, DataSplit split)
For ease-of-use, the default implementation has a helpéraue
makeVector(Node node, double[] vector),

which takes the intrinsic variables and all the aggregatsex by the model and create a vector
representation of doubles. This is what is used by the Welegper module.

Once a new class has been created, it must be added tol&issifier.properties
configuration file to let NetKit know about its existence.

B.4 Collective Inferencing Module

The Collective Inferencing (CI) module is a general API whimables the implementation of infer-
encing techniques. The API consists of one main metestimate( Mp, VY), which takes
as its input a learned relational modél z, and the set of vertices whose value of attributeeeds
to be estimated. It returrG = {c;}.

39



MACSKASSY AND PROVOST

There are currently three collective inferencing alganishimplemented, each of which are
described in Section 2.4.2.

Extending NetKit by creating a new collective inferencing method requirestorcreate a new
subclass of the generic NetKit InferenceMethod class aiité @minimum of 4 methods:

1. public String getShortName()

2. public String getName()

3. public String getDescription()

4. public boolean iterate(NetworkClassifier classifier)

This should iterate through the list of nodes whose atteibure to be predicted and apply the
classifier to those nodes. How this is done, and what to gigectassifier is dependent on the
inference method.

Once a new class has been created, it must be addedtddrencemethod.properties
configuration file to let NetKit know about its existence.

B.5 Aggregators

The toolkit currently supports the more common aggregatehniques, which include the mode,
mean, min, max, count, exist and ratio (a normalized coditit¢re are plans to extend these to also
include class-conditional aggregation (Perlich and Psg\2003).

Extending NetKit by creating a new aggregator requires one to either subttlas&ggrega-
torlmp class or AggregatorByValuelmp class, depending bether the aggregator is across all val-
ues of an attribute (such as min/mode/max) or for a parti@itabute value (such as count/exist/ratio.)

Once a new class has been created, it must be added tmyregator.properties
configuration file to let NetKit know about its existence.

B.6 Weka Wrapping Module

The final module is the Weka wrapping module. This module asta bridge to Weka, a popular
public machine learning toolkit. It needs to be initializedgiving it the name of the Weka classifier,
WC, to wrap.

There are two wrappers for weka, one for the LC module and arthé RC module, where the
induceModel andestimate methods convert the inputs to the internal representatied by
Weka, and then passes this transformed set of entities tod&L Weka induce the classifier.

The estimate  method works similarly by converting the attribute vectbrinto the inter-
nal representation used by Weka (again, making use of theegajgr functions specified in the
induceModel method), calls WC to estimate, and then transforms the reply from WC back
into the vector format used by our toolkit.

B.7 Configuring NetKit

NetKit is very configurable and should require very littl@gramming for most uses. The config-
uration files allow great customization of how the LC, RC, &idnodules work, by being able to
set many parameters such as how many iterations the CI netihmdld run for, as well as what
kind of aggregation and aggregators the RC methods shoald us
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There arer configuration files:

1.

aggregator.properties
This defines the aggregators available as well as what kiattrifutes (continuous, categor-
ical, discrete) they will work on.

. distance.properties

This defines the vector-distance functions available. €hily, there are the three commonly
used distance functions, L1, L2 and cosine. Currently, only classifier, cdRN, makes use
of distance functions.

. inferencemethod.properties

This defines, and sets the parameters, for all the inferegites available to NetKit. Each
method and patemeter specification group is given a unigone isaich that the same method
can be used more than once but with different parameters.

Iclassifier.properties
Like the inferencemethod above this defines and sets tlaengaers for the local classifiers.

. NetKit.properties

This sets default parameters for NetKit (which can be odden on the commandline.)

. rclassifier.properties

Like the inferencemethod above this defines and sets tlaengaers for the relational classi-
fiers.

. weka.properties

This defines the weka classifiers available to NetKit.

Each of the configuration files are well-commented to makasydo customize NetKit.
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